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Abstract

In this paper, a fractional partial differential equation (FPDE) describing sub-diffusion is considered. An implicit differ-
ence approximation scheme (IDAS) for solving a FPDE is presented. We propose a Fourier method for analyzing the stability
and convergence of the IDAS, derive the global accuracy of the IDAS, and discuss the solvability. Finally, numerical exam-
ples are given to compare with the exact solution for the order of convergence, and simulate the fractional dynamical systems.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Fractional diffusion equations have attracted in recent years a considerable interest both in mathematics
and in applications. These equations contain derivatives of fractional order in space, time or space—time [1].
They were used in modelling of many physical and chemical processes and in engineering [2-4]. Such evo-
lution equations imply a fractional Fick’s law for the flux that accounts for spatial and temporal non-local-
ity [5]. Fractional calculus provides a powerful instrument for the description of memory and hereditary
properties of substances [4]. Fractional-order differential equations have been the subject of worldwide
attention by many research groups. In particular, the focus of Gorenflo, Mainardi and their co-authors’
works on fractional calculus modelling (both deterministic and stochastic) and the derivation of fundamen-
tal solutions of the time, space and space-time fractional diffusion equations. They also presented discrete
random walk models [6,7] and found that the fundamental solution can be interpreted as a probability
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density evolving in time of a self-similar stochastic process that can be viewed as a generalised diffusion pro-
cess. Benson et al. [8,9] used a fractional advection—dispersion equation to simulate transport processes with
heavy tails and demonstrated the equivalence between these heavy-tailed motions and transport equations
that use fractional-order derivatives. Already in 1986, Wyss [10] considered the time fractional diffusion
equation and gave the solution in closed form in terms of Fox functions. Then in 1989, Schneider and Wyss
[11] considered the time fractional diffusion and wave equations, and the corresponding Green functions
were obtained in closed form for arbitrary space dimensions in terms of Fox functions and their properties
were exhibited. However, an explicit representation of the Green functions for the problem in a half-space
was difficult to determine, except in the special cases « = 1 (i.e., the first-order time derivative) with arbitrary
n, or n =1 with arbitrary o (i.e., the fractional-order time derivative). Huang and Liu [12] considered the
time-fractional diffusion equations in an n-dimensional whole-space and half-space. They investigated the
explicit relationships between the problems in whole-space with the corresponding problems in half-space
by the Fourier—Laplace transform.

Fractional kinetic equations have proved particularly useful in the context of anomalous slow diffusion
(sub-diffusion) [1]. The theoretical justification for the fractional diffusion equation, together with the abun-
dance of physical and biological experiments demonstrating the prevalence of anomalous sub-diffusion, has
led to an intensive effort in recent years to find accurate and stable methods of solution that are also straight-
forward to implement [13]. It has been suggested that the probability density function (pdf) u(x, ¢) that
describes anomalous sub-diffusive particles follows the fractional diffusion equation [1,13,14]:

Ou(x,1) e [azu(x, 1)

- o2

50 op) [ s =0 (m

where (D} 7u (0 <y < 1) denotes the Riemann-Liouville fractional derivative of order 1 — y of the function
u(x, t):

. 1 9 (" ulxn1)
D u(x,t) = —— =~ / — = drt (2)
0 ) —y ’
' r(y)otfy (t—1)"7

with 0 <y <1. For y =1 one recovers the identity operator and for y = 0 the ordinary first-order derivative.

Some numerical methods for solving the space or time, or time-space fractional partial differential equa-
tions have been proposed [15-24]. However, the stability and convergence of numerical methods for fractional
partial differential equations are deserved further investigations.

In this paper, we consider the initial-boundary value problem of the fractional diffusion equation describing
sub-diffusion (FDE-sub) [13,25]:

2
au(a);7 t) =D’ [G%E;,t)] +f(x,0), 0<t<T, 0<x<L, (3)
W00 =), 0<t<T )
ull,t)=y(t), 0<t<T, (5)
u(x,0) =w(x), 0 < x <L, (6)

where 0 <y < 1; f(x,1), ¢(¢), ¥(¢) and w(x) are sufficiently smooth functions.

Langlands and Henry [13] have investigated this problem. They proposed an implicit numerical scheme (L1
approximation), and discussed the accuracy and stability of this scheme. However, the global accuracy of the
implicit numerical scheme has not been derived and it is apparent that the unconditional stability for all y in
the range 0 <y < 1 has not been established. The main purpose of this paper is to solve this problem via Fou-
rier method.

The structure of the paper is as follows. In Section 2, we present an implicit difference approximation
scheme. Sections 3 and 4 investigate the stability and convergence of the IDAS, respectively, using Fourier
method. We prove that the IDAS is unconditionally stable for all y in the range 0 <y < 1, derive the global
accuracy of the IDAS, analyze the convergence of the IDAS , and discuss the solvability. Finally, some numer-
ical examples are provided.
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2. An implicit difference approximation scheme for FDE-sub

In this section, we first let
tr=kt, k=0,1,....N
and
x;=jh, j=0,1,...,M,

respectively, where t = T/N and h = L/ M. For every 1 — y, the Riemann-Liouville fractional derivative exists
and coincides with the Griinwald—Letnikov fractional derivative. The relationship between the Riemann—
Liouville and Griinwald-Letnikov definitions is also another consequence that is important for numerical
approximation of FDE-sub; the formulation of applied problems; the manipulation with fractional deriva-
tives; and the formulation of physically meaningful initial and boundary value problems. This allows the
use of the Riemann—Liouville definition during problem formulation, and then the Griinwald-Letnikov def-
inition for obtaining the numerical solution [15]. In proposing an approximation for FDE-sub, the key point is
how to approximate the Riemann—Liouville fractional derivative. Using the relationship between Griinwald—
Letnikov and Riemann-Liouville fractional derivatives [4], we have

[t/1]
1—y IR TIR S R I () = -1 -7 B
oD, f(t) = 13_1}3’[ 4, lrlinr E ( >f(t It).

Then the initial-boundary value problem of FDE-sub (3)—(6) can be approximated by the following implicit
difference approximation scheme:

k kl

“ff_ 1;2 ZA,( S 2ufl+uj+1)+fk (k=1,2,...,N,j=1,2,....M —1), (7)

uf = o(t) (k=0,1,...,N), (8)

Wy =y(t) (k=0,1,...,N), )

W =wlx) (j=0,1,...,M) (10)
where 4, = (—1)’ (1 ;’) 1=0,1,....k and f* = f(x;,1,).

3. Stability of the implicit difference approximation scheme

In this section, we will analyze the stability of the IDAS (7)—(10). We first rewrite (7) as
k
— ! +uz/1,(ujt{ — 2 ’+uj+1) st (k=1,2,.. N,j=1,2,... .M —1), (11)
=0

where y = ;—
Let Uj‘ be the approximate solution of IDAS (7)—(10), and define

pf:ujf—Ujf (k=0,1,....,N,j=1,2,.... M — 1),
and

k__ [k ok k T

pf =[Pt 05 P

respectively. We obtain the following roundoff error equations:

ph=pt +,MZ/L1(/)/1 ’+pf+jf) (k=1,2,...,N.j=1,2,....M —1). (12)

We will analyze the stability of IDAS (7)-(10) by using Fourier method. Based on this, we define grid
functions:
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. pt, whenx; —4<x j=12,...,.M -1,
prx) =1’ '
0, whenO < x <
then pk(x) can be expanded in a Fourier series:
= Y di(m)e”™ "t (k=1,2,...,N),

m=—00

1

L
dk(m):Z/O p]‘(x)ef'znmx/de.

Noticing, with the natural definition of the discrete 2-norm,

"I, = (Ai‘jhm’;lz) l/ |p*(x |dx+Z/jj+’ dx+/L2
- |pk<x>|2dxr )

and applying the Parseval equality:

/|p fdr = Zw I,

we obtain

ol—
ol—

| k(X)IZdX]

o0

"1 ="Y ld(m)P”. (14)

Based on the above analysis, we can suppose that the solution of Eq. (12) has the following form:
mjh

p—de

where ¢ = 2rnm/L. Substituting the above expression into (12), we obtain

k
<1+4sin2%h>dk:< — 4udy sin® —h>dk1—4us1 ;Zz,dk_, (k=1,2,...,N). (15)
1=2

Lemma 1. The coefficients 7, (1 =0,1,...) satisfy

(D) Ap=1, /11:"/—1, ),/<0, 1=1,2,...
(2) Ziol[ = 17 and Vn € N+, _Z’;:l/ll < 1.

Applying Lemma 1, Eq. (15) can be written as

1+ 4u(1 —y)sin® 2 4usin® ¢ &
di = ( .)2 i 2dk71*7.§hz)”dkf/ (k=1,2,...,N). (16)
1+ 4psin”™ 2 1+ 4usin® 9 75

Proposition 1. Supposing that d; (k =1,2...,N) be the solution of Eq. (16), we have

| < |d,) (k=1,2,...,N).
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Proof. We will use mathematical induction to complete the proof. For k =1, from Eq. (16) we have

1 +4u(1 —y)sin® 2
dy = — 0-
1+ 4psin” 2
Noticing that 0 <y <1, we obtain
ldi| < |dol-
Supposing that
|d,| < |do|] (n=1,2,....k—1),

applying Lemma 1, from Eq. (16), we have

14 4u(1 —y)sin® 2 4usin® 2 Ko
di| < N 7 o : ‘dk—1|+7_§(ﬂ12|/tl”dk—l|
+4usin” & 1 +4psin” G =
1+4u(1—“/)sinz"7”Jr 4yusin® Ek:|)z|— al ) 1ol
1 +4pusin” 2 1 +4usin® 2\ 4
- 1+4,u(l—y)sin2”2—”+ 4pusin® 2 _iﬂ — = Y]
T 1tdusin’ 2 1 +dpsin’ @ “ Ve
usin” 5 +4usin” 5 =

1 +4u(1 — y)sin® 2 4y sin® 2
< e —3—[1 = (1=9)] pldo| = |do|.
1 +4psin” & 1 +4psin” &

This completes the proof. O
Theorem 1. The implicit difference approximation scheme (7)—(10) is unconditionally stable.

Proof. Applying Proposition 1, and noticing (14), we obtain
HpkHZ < ”pOH27 k:1727"'7N7
which proves that IDAS (7)-(10) is unconditionally stable. [J

4. Convergence of the implicit difference approximation scheme

In this section, we first introduce the following lemma.

Lemma 2. 7~ 'S>% 7, = ﬁ +0(7).

Proof. Because

[t/1]

oD} g(t) =y dug(t — 1) +0(1),
=0

then
k
oD; "g(t)] ., =7 Z gty — It) + 0(z).
=0

Taking g(f) =1 and #, =1 in (17), we have

k
oD} ()], =77 A+ 0(1).
1=0
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Therefore,

o IZM Dl +0(2) =+ 0(x).

1
I'(y)
This completes the proof. [

We now define

u(x;, ty) —u(x;,t r* !
Rf = (s ) (s i) 2)1 u(xj1,ti-r) — 2u(xj, ti—y) + u(xjp1, i)

(k:1,2,...,N,J:1,2,..., —1). (18)

Applying Lemma 2 and (17), we have

a—1 Kk 2
7 (0% u(x;, ¢
T Y Al ) = 20 ) + s, ) = o017 5]+ 0(0) + 008
On the other hand,
u(Xj, 1) — (X, i) _ Ou(x), ti) +O0().
T ot
Consequently,
K _ 2 _ .
R;=0(t+h’) (k=12,...,N,j=12,....M—1).
Therefore, there is a positive constant ¢y, such that
R < ai(z+#), k=12,....N (j=12,....M—1). (19)
Let
e_llf:u(xj,tk) —uf (k=1,2,...,N,i=12,....M—1)
and
K ko k kT K k pk k1T
¢ =le,é,....ey ], R=I[RLRS,....R,_ ],
respectively. From (18), we have
o K
u(x;, ty) = u(x;, t—1) +ﬁ le[u(xj—latk—l) —2u(x;, tey) +u(xjor, )] + 11 (), 4) + TRfa
=0
k=1,2,....N, j=12....M—1.
Subtracting the above equation from Eq. (11), we obtain
k
:e_j?*1+,121l( Zek1+el+l>—|—rRk (k=1,2...,N,j=1,2,....M —1). (20)
1=0

We now analyze the convergence of IDAS (7)—(10) by using Fourier method. Using the same idea to the sta-
bility analysis in Section 3, we first define grid functions:

ef(x) = (k=0,1,...,N)

k h
e, when x; —3 <x
0, whenO < x <
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and

k h
Rk(x) _ Rj’ when Xj—3 <Xx
0, whenO < x <

respectively. Then ek(x) and R¥(x) have Fourier series expansions, respectively:

= Z rfk(m)eiz"”"‘/L (k=0,1,...,N)
and
Ri(x) = " m(m)ye™ /- (k=1,2,...,N)
where
1 t k —i2mmx/L
G(m) =— [ € (x)e”™  dx,
L Jy
and

1 g —12nmx
nk(m):z/o R*(x)e 2"/l dx,

Similarly, we also have

lef]15 = <2h|€k|> Z &m)* (k=0,1,...,N) (21)

and

m=—00

1
M—1 2 00
IRl = <2;th§|2> =D Inm)l (k=12,....N), (22)

respectively. Based on the above analysis, we can suppose that

ef — el
and

Rk = el(f]h
respectively. Substituting the above expressions into (20), we obtain

. 5 Oh
<1 + 4psin’ 62>ék = <1 — 4ply sin’ ) &y — 4usin® — Zi;gk e (k=1,2,...,N). (23)
1=2
Applying Lemma 1, Eq. (23) can be written as
1+ 4u(1 — y)sin’ 2 4y sin’ g &
= _ +—— (k=1,2,...,N). 24
& 1—&—4,usin2“7h St 1 + 4pusin 2"7}’2 18k 1+4usm ( ) (24

Proposition 2. Supposethe & (k =1,2,...,N) bethe solution of Eq. (24), then there is a positive constant ¢, such that
&) < keerlml, k=128

Proof. First, noticing that ¢” =0, we have

S =&(m) =0



C.-M. Chen et al. | Journal of Computational Physics 227 (2007) 886-897
In addition, from (19) and the left-hand side of (22), we have

IR, < eoVL(r+h), k=12,...,N.

893

(25)

Again, based on the convergence of the series in the right-hand side of (22), then there is a positive constant ¢,

such that

il = I (m)| < ealm| = calm(m)],  k=1,2,....N.

We will complete the proof using mathematical induction. For k = 1, from (24), we have

:1+4,u(1—y)sin2"7h N ™, _ ™,
1+4,usin2“7” 0 1+4,usin2“7h 1+4,usin2“2—h

From (26), we obtain
& < tml < eatlnyl.
Suppose that
|, < entlny], n=1,2,...k—1.

Applying Lemma 1, and noticing that 0 <y <1 and (26), from (24), we have

2 gh

1+ 4u(1 — y)sin’ 4 sin
Iik i+

14 < 1 + 4pusin” 2 1 +4usin” 9 9 1 +4psin

This completes the proof. [

k
5 T[]
T 2 léel+ L < ookl
2

(26)

Theorem 2. The implicit difference approximation scheme (7)—(10) is Lo-convergent, and the order of convergence

is O(t + ).

Proof . Applying Proposition 2 and (25), and noticing (21) and (22), we obtain
Il < exkellR'l, < ereakevI(x+ 7).

Because kt < T, we have
letll, < ez + i),

where ¢ = ¢;¢,TV/L. This completes the proof. [

5. The solvability of the implicit difference approximation scheme

We let

W = w(xy), w(xa), ..., W(XM71)]T

and

k_ T,k ok k1T _
u' =Wl s,y ], k=1,2,... N

respectively, then the implicit difference approximation scheme (7)—(10) can be written in matrix form:

k—1
Au = ZB,-uf+F, k=1,2,...,N,

i=0

(27)



894 C.-M. Chen et al. | Journal of Computational Physics 227 (2007) 886-897

where
[1+2u  —u T
—u 1+2p —u
A= ,
- 1+2u  —p
i - T42p
-2 1
1 -2 1
B[:,Uf/,{k,[ ) i:0717"'7k_27
1 -2 1
1 -2
_1 — 2,[1)4 ,u)q i
,u)q 11— 2,[1)»1 ,u)q
Bk—l = . . . . . . s
,LL)»l 1— 2/121 —,u/ll
L ,Lt)nl 1 - 2/1/11 |
_ ‘ _
WY i () + tf (x1, 1)
i=0
Tf (X2, 1)
F = :
Tf (Xp—2, )
k
1o Aeip () + of (-1, 1)
L =0 J

Theorem 3. The difference equation (27) is uniquely solvable.

Proof . Because u > 0, then the coefficient matrix of the difference equation (27) is a strictly diagonally domi-
nant matrix. Therefore, 4 is a nonsingular matrix; this proves Theorem 3. [

6. Numerical examples

In this section, some numerical examples are presented which confirm our theoretical results.

Example 1. Fractional diffusion equation describing sub-diffusion with a non-homogeneous term:

du(x, 1) L [Qu(x, £) , T2+ ,
= i * 1 - <
o oD, 2 +e | (1+y)f F(1+2“/)t , 0<r <1, 0<x<l, (28)
u(V,¢) =17, <t < )
0 0 1 29
u(l,fy=et", 0 <t < 1, (30)
u(x,00=0, 0 < x < 1. (31)

The exact solution of the problems (28)—(31) is

u(x,t) = e,
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The maximum error of the exact solution and IDAS is defined as follows:

k
E, = . énkai(N . én/aé(M {|uj — u(x_,-,tk)|}.
A comparison of the maximum errors of the problems (28)—(31) at all mesh points for different y between the
L-approximation and IDAS is listed in Tables 1 and 2. From Tables 1 and 2, it can be seen that our IDAS is
slightly more accurate than the L,-approximation. Tables 3 and 4 show the maximum errors of the problems
(28)—(31) at all mesh points for different y using z = 4 = é andt=h= 3%, respectively. From Tables 1-4, it can
be seen that the IDAS is unconditionally stable and convergent with order O(t + 4*), which conforms with our
theoretical analysis.

Example 2. Fractional diffusion equation describing sub-diffusion with a homogeneous term:

Ou(x, 1) L [Qu(x, t)
ot :ODt Y ? 5 0<t, 0<)C<27 (32)
w(0,0=0, 0 <1 (33)
u2,)=0, 0 < ¢ < 1, (34)
2%, 0<x<!
2
u(x,0) = wlx) = { S (39)
3 3 XXX
Table 1
The maximum error (t =&, h=14)
v E., (IDAS) E., (Li-approximation)
0.4 0.9774769E — 03 0.1812220E — 02
0.5 0.1314691E — 02 0.2103329E — 02
0.6 0.1640956E — 02 0.2363563E — 02
Table 2
The maximum error (t = 1, # = %)
y E.. (IDAS) E.., (Li-approximation)
0.4 0.1204014E — 03 0.2110046E — 03
0.5 0.9040628E — 04 0.1107985E — 03
0.6 0.2180338E — 03 0.2259971E — 03
Table 3
The maximum error (t = h ={)
. E.. (IDAS)
0.4 0.5480236E — 02
0.5 0.8357003E — 02
0.6 0.1132181E — 01
Table 4
The maximum error (t = h = 3)
. E.. (IDAS)
0.4 0.1792436E — 02
0.5 0.2493483E — 02

0.6 0.3179647E — 02
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=0.4)

u(x,t

Fig. 1. The numerical solution of problem (32)—(35) when ¢ = 0.4 for various y.

0.5,t)

u(x=!

Fig. 2. The numerical solution of problem (32)—(35) when x = % for various y.

The function w(x) represents the temperature distribution in a bar generated by a point heat source kept at the
point x =1 for sufficiently long time.

Figs. 1 and 2 compare the response of the diffusion system for different real number 0 <y <1 at z = 0.4 and
different x, and at x = 0.5 and different ¢, respectively. In the example, we take 1 = 0.01, 2 = 0.1. From Figs. 1
and 2, it is seen that IDAS can be applied to simulate fractional dynamical systems.

7. Conclusion

In this paper, we presented an implicit difference approximation scheme for solving a fractional diffusion
equation describing sub-diffusion. Fourier method has been has been used to successfully analyze the stability
and the convergence of the IDAS. This technique can also be extended to analyze other fractional partial dif-
ferential equations.
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